Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Neurology ; 100(23): e2409-e2423, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-2313525

ABSTRACT

BACKGROUND AND OBJECTIVES: Post-COVID condition (PCC) is common and often involves neuropsychiatric symptoms. This study aimed to use blood oxygenation level-dependent fMRI (BOLD-fMRI) to assess whether participants with PCC had abnormal brain activation during working memory (WM) and whether the abnormal brain activation could predict cognitive performance, motor function, or psychiatric symptoms. METHODS: The participants with PCC had documented coronavirus disease 2019 (COVID-19) at least 6 weeks before enrollment. Healthy control participants had no prior history of COVID-19 and negative tests for severe acute respiratory syndrome coronavirus 2. Participants were assessed using 3 NIH Toolbox (NIHTB) batteries for Cognition (NIHTB-CB), Emotion (NIHTB-EB), and Motor function (NIHTB-MB) and selected tests from the Patient-Reported Outcomes Measurement Information System (PROMIS). Each had BOLD-fMRI at 3T, during WM (N-back) tasks with increasing attentional/WM load. RESULTS: One hundred sixty-nine participants were screened; 50 fulfilled the study criteria and had complete and usable data sets for this cross-sectional cohort study. Twenty-nine participants with PCC were diagnosed with COVID-19 242 ± 156 days earlier; they had similar ages (42 ± 12 vs 41 ± 12 years), gender proportion (65% vs 57%), racial/ethnic distribution, handedness, education, and socioeconomic status, as the 21 uninfected healthy controls. Despite the high prevalence of memory (79%) and concentration (93%) complaints, the PCC group had similar performance on the NIHTB-CB as the controls. However, participants with PCC had greater brain activation than the controls across the network (false discovery rate-corrected p = 0.003, Tmax = 4.17), with greater activation in the right superior frontal gyrus (p = 0.009, Cohen d = 0.81, 95% CI 0.15-1.46) but lesser deactivation in the default mode regions (p = 0.001, d = 1.03, 95% CI 0.61-1.99). Compared with controls, participants with PCC also had poorer dexterity and endurance on the NIHTB-MB, higher T scores for negative affect and perceived stress, but lower T scores for psychological well-being on the NIHTB-EB, as well as more pain symptoms and poorer mental and physical health on measures from the PROMIS. Greater brain activation predicted poorer scores on measures that were abnormal on the NIHTB-EB. DISCUSSION: Participants with PCC and neuropsychiatric symptoms demonstrated compensatory neural processes with greater usage of alternate brain regions, and reorganized networks, to maintain normal performance during WM tasks. BOLD-fMRI was sensitive for detecting brain abnormalities that correlated with various quantitative neuropsychiatric symptoms.


Subject(s)
COVID-19 , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neuropsychological Tests
2.
NeuroImmune Pharm Ther ; 2(1): 37-48, 2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2298819

ABSTRACT

Objectives: We aimed to compare brain white matter integrity in participants with post-COVID-19 conditions (PCC) and healthy controls. Methods: We compared cognitive performance (NIH Toolbox®), psychiatric symptoms and diffusion tensor imaging (DTI) metrics between 23 PCC participants and 24 controls. Fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities were measured in 9 white matter tracts and 6 subcortical regions using MRICloud. Results: Compared to controls, PCC had similar cognitive performance, but greater psychiatric symptoms and perceived stress, as well as higher FA and lower diffusivities in multiple white matter tracts (ANCOVA-p-values≤0.001-0.048). Amongst women, PCC had higher left amygdala-MD than controls (sex-by-PCC p=0.006). Regardless of COVID-19 history, higher sagittal strata-FA predicted greater fatigue (r=0.48-0.52, p<0.001) in all participants, and higher left amygdala-MD predicted greater fatigue (r=0.61, p<0.001) and anxiety (r=0.69, p<0.001) in women, and higher perceived stress (r=0.45, p=0.002) for all participants. Conclusions: Microstructural abnormalities are evident in PCC participants averaged six months after COVID-19. The restricted diffusivity (with reduced MD) and higher FA suggest enhanced myelination or increased magnetic susceptibility from iron deposition, as seen in stress conditions. The higher amygdala-MD in female PCC suggests persistent neuroinflammation, which might contribute to their fatigue, anxiety, and perceived stress.

3.
Journal of Neuroimmune Pharmacology ; : 1-19, 2021.
Article in English | ProQuest Central | ID: covidwho-1209964

ABSTRACT

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs’ as a vaccine candidate delivery system.

4.
Nat Mater ; 20(5): 593-605, 2021 05.
Article in English | MEDLINE | ID: covidwho-1085425

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , Antigens, Viral/analysis , Brain/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Lung/diagnostic imaging , Metagenomics/methods , Nanostructures , Nanotechnology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Viral Load , Virus Shedding
5.
J Neuroimmune Pharmacol ; 16(2): 270-288, 2021 06.
Article in English | MEDLINE | ID: covidwho-1064584

ABSTRACT

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.


Subject(s)
COVID-19 Drug Treatment , Drug Delivery Systems/trends , Extracellular Vesicles , SARS-CoV-2/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/immunology , COVID-19/metabolism , Drug Delivery Systems/methods , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Immunologic Factors/administration & dosage , Immunologic Factors/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
6.
Adv Drug Deliv Rev ; 171: 215-239, 2021 04.
Article in English | MEDLINE | ID: covidwho-1014284

ABSTRACT

The SARS-CoV-2 global pandemic has seen rapid spread, disease morbidities and death associated with substantive social, economic and societal impacts. Treatments rely on re-purposed antivirals and immune modulatory agents focusing on attenuating the acute respiratory distress syndrome. No curative therapies exist. Vaccines remain the best hope for disease control and the principal global effort to end the pandemic. Herein, we summarize those developments with a focus on the role played by nanocarrier delivery.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Carriers/administration & dosage , Nanocapsules/administration & dosage , SARS-CoV-2/drug effects , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Humans , SARS-CoV-2/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
7.
J Neuroimmune Pharmacol ; 16(1): 12-37, 2021 03.
Article in English | MEDLINE | ID: covidwho-1009180

ABSTRACT

The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines , Drug Repositioning , Humans
8.
Journal of Portfolio Management ; 47(1):16-28, 2020.
Article in English | ProQuest Central | ID: covidwho-902702

ABSTRACT

The authors discuss monetization strategies for both left- and right-tail risk hedging to illustrate the potential benefits of active management of hedges. In particular, by including actual data from the sharp COVID-19 pandemic-related market correction and subsequent rebound of 2020, the authors quantify how monetization strategies have the ability to improve the performance of portfolio hedges. This extends previous work on active tail risk hedging published in this journal. The authors conclude that active management of tail hedging can result in significant increases in the efficacy of tail hedging. TOPICS: Options, performance measurement, portfolio construction, tail risks Key Findings • Simple monetization rules designed as a function of the option price can result in the full or partial sale of a hedging position that has appreciated in price. • Monetization strategies for both left-tail and right-tail risk hedging have the ability to improve the performance of portfolio hedges. • Active management of tail hedging can result in significant increases in the efficacy of tail hedging.

9.
J Neuroimmune Pharmacol ; 15(3): 359-386, 2020 09.
Article in English | MEDLINE | ID: covidwho-659901

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2, is a positive-sense single-stranded RNA virus with epithelial cell and respiratory system proclivity. Like its predecessor, SARS-CoV, COVID-19 can lead to life-threatening disease. Due to wide geographic impact affecting an extremely high proportion of the world population it was defined by the World Health Organization as a global public health pandemic. The infection is known to readily spread from person-to-person. This occurs through liquid droplets by cough, sneeze, hand-to-mouth-to-eye contact and through contaminated hard surfaces. Close human proximity accelerates SARS-CoV-2 spread. COVID-19 is a systemic disease that can move beyond the lungs by blood-based dissemination to affect multiple organs. These organs include the kidney, liver, muscles, nervous system, and spleen. The primary cause of SARS-CoV-2 mortality is acute respiratory distress syndrome initiated by epithelial infection and alveolar macrophage activation in the lungs. The early cell-based portal for viral entry is through the angiotensin-converting enzyme 2 receptor. Viral origins are zoonotic with genomic linkages to the bat coronaviruses but without an identifiable intermediate animal reservoir. There are currently few therapeutic options, and while many are being tested, although none are effective in curtailing the death rates. There is no available vaccine yet. Intense global efforts have targeted research into a better understanding of the epidemiology, molecular biology, pharmacology, and pathobiology of SARS-CoV-2. These fields of study will provide the insights directed to curtailing this disease outbreak with intense international impact. Graphical Abstract.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL